UPLIFT OF THE PAMIR AND TIANSHAN SET HYDROCLIMATE PATTERNS IN CENTRAL ASIA SINCE THE LATE OLIGOCENE
Here, we present magnetostratigraphy, U-Pb geochronology, thermochronology, paleoclimatology, stable carbon and oxygen isotope geochemistry, and climate modelling techniques to the Cenozoic sedimentary sequences in the Tajik Basin. Our results show that: 1) the penultimate and ultimate retreat of the Paratethys from central Asia occurred at ~41 and ~37.4 Ma, respectively; 2) the Pamirs have experienced active deformation and accelerated exhumation during the late Oligocene to early Miocene; 3) the windward (western) side of the Pamir and Tian Shan has been characterized by a wetter climate changes, whereas, the leeward (eastern) side of the orogen has been characterized by more arid conditions since the Late Oligocene; 4) This distinct east-west hydroclimate differences, when integrated with climate modeling results, suggests that at least part of the Pamir-Tian Shan mountains had reached elevations ≥ 3 km and acted as a moisture barrier for the westerlies since ~25 Ma. We suggest that the interactions between the westerlies and the Pamir-Tian Shan orogen played an important role in driving Asian aridification since the Late Oligocene.