

University of Idaho Department of Earth and Spatial Sciences

Battelle Energy Alliance manages INL for the epartment of Energy's Office of Nuclear Energ

Center for Advanced Energy Studies

Idaho National Laboratory

Introduction

CO₂ capture and storage in geologic formations is a recognized strategy for the mitigation of atmospheric greenhouse gas emissions in which CO₂ is captured and injected as a free phase (supercritical) or aqueous phase (dissolved in water) into the subsurface. Large basalt provinces such as the Snake River Plain (SRP) in southern Idaho, USA represents a formation type that has the potential to mineralize and permanently sequester gigaton quantities of CO₂ as carbonate minerals. However, the quantitative assessment of the capacity and rate of mineralization requires, among other things, an understanding of the release of divalent base cations (Ca, Mg, and Fe) which is a function of the reactive surface area of basalt. Commonly, geometric considerations (e.g., fracture) or B.E.T. gas adsorption are used to estimate surface areas resulting in values that differ from each other by orders of magnitude. For example, two grain size fractions of SRP basalt used in ongoing batch kinetic experiments had geometric surface areas of $8.99 \cdot 10^{-3}$ and $3.49 \cdot 10^{-3}$ m²/g compared to B.E.T. surface areas of 0.634 and 0.589 m²/g. Given that reactions rates directly scale with reactive surface area, identifying the fraction of total surface area that participates in reactions is critical.

Methods and Results

An alternative approach to directly assess surface area is the use of mercury porosimetry which provides a simultaneous measurement of surface area and pore size distribution¹. Core Laboratories, Inc. (1997) conducted a testing program of 15 samples collected from TAN-33 drill core that penetrated vertically fractured, horizontally fractured, and massive sections of SRP basalt flows (see well log) to determine:

- Pore size distribution
- Permeability to groundwater
- Porosity
- Surface area

¹The Core Labs Study provided mercury intrusion as a function of discrete pressures (to a maximum of 50,000 psia) that were used to calculate pore size distribution and surface area for the basalt samples (Allen 1997).

 $r_{pore} = \frac{2\gamma}{p} \cos \theta$ and $S_{area} = -\frac{1}{m \cdot \gamma \cos \theta} \int_0^V p \, dV \approx -\frac{1}{\gamma \cos \theta} \sum \bar{p} \, \Delta V$

Figure 1. Pore size distribution of Snake River Plain Basalts as a function of 4 permeability ranges show that higher permeability samples are dominated by larger pore and lower permeability samples show a broader range of pore sizes.

Porosity, Permeability, and Pore Size Distributions for Snake River Plain, Idaho Basalts: Implications for CO₂ Mineralization in Basalt

Robert W. Smith^{1,2} (<u>smithbob@uidaho.edu</u>), Travis L. McLing^{2,3}, Ghanashyam Neupane^{2,3}, Trevor A. Atkinson^{2,3}, and Ram Kumar^{2,3} ¹University of Idaho, Moscow, ID, USA; ²Center for Advanced Energy Studies, Idaho Falls, ID, USA; ³Idaho National Laboratory, Idaho Falls, ID, USA

Figure 2. (a) Permeability to groundwater of Snake River Plain Basalts varied by a factor of 2,000 (range 0.013-26.1 millidarcy) and was minimally correlated (R²=0.22, not shown) with porosity. (b) Porosity ranged from 8.5-18%, with approximately two-thirds of the porosity being associated with larger pores (greater than $1 \mu m$ in diameter). (c) Total surface area ranged from 1.3-4.0 m^2/g , with an average of 0.8% of the surface area associated with larger pores and greater than 99% of the surface area associated with pore less than $1 \mu m$ in diameter.

Figure 3. The permeability of Snake River Plain Basalts was more highly correlated with the surface area of larger pores (R²=0.79) than with the total surface area (R²=0.17) suggesting the small pores with large, aggregated surface area do not significantly contribute to advective transport

Figure 5. Reactive transport modeling results of CO_2 injection comparing two scenarios (total vs r>0.5μm) as shown in figure 2. Differences in calcite precipitation (left) and basalt (as plagioclase) dissolution (right) are plotted in terms of volume fraction of total rock volume. Permeability, porosity, and surface areas are averaged separately for three depths 70-80 m, 90-120 m, and 120-140 m for both the cases (total and r>0.5 μ m). A constant injection of supercritical CO₂ at rate of 15 kg/s is carried out for 5 years in a fully screened well (across all the layers). The magnitude of difference in mineralogical changes of calcite and plagioclase are largely due to changes in surface area. However, the color difference/depth across the three layers can be attributed to differences in their permeabilities. The total surface area simulation result in ~30% more precipitated calcite in comparison to the surface area associated with pores >1 μ m diameter.

Discussion and Conclusions

Mercury porosimetry allows the assessment of the relationship of surface area of larger pores (>1 µm Allen, T (1997) Particle Size Measurement Volume 2: Surface Area and Pore Size Determination. 5th edition, Chapman & Hall, London, UK 251 p. https://link.springer.com/book/9780412753305. diameter) representing ~ 0.7% of the total surface area and permeability (an indication pore interconnectedness). Using image analysis of scanning electron micrographs (2 µm resolution) Awolayo et al. (2022) quantified the fluid-accessible mineral surface area of 0.25 m²/g. Their results suggest Awolayo AN, CT Laureijs, J Byng, AJ Luhmann, R Lauer, and BM Tutolo (2022) Mineral surface area of 0.25 m²/g. Their results suggest Awolayo AN, CT Laureijs, J Byng, AJ Luhmann, R Lauer, and BM Tutolo (2022) Mineral surface area of 0.25 m²/g. constraints on carbon mineralization in basaltic aquifers *Geochimica et Cosmochimica Acta* **334**:293-315. that accessible surface area represents ~0.1% of the B.E.T. surface area. This compares to 0.1-0.9% of total surface area for pores with a diameter >2 µm determined using Hghttps://doi.org/10.1016/j.gca.2022.08.011. porosimetry. Core Labs (1997) Advanced Core Analysis Test Program. File DAL-97003 Core Laboratories, Inc., Carrollton, TX.

The observed correlation between surface area of larger pores and permeability indicates that injected CO₂-rich fluids will primarily flow through higher permeability, smaller surface area (less reactive) regions in basalt formation minimizing the potential for carbonate mineralization prematurely limiting injection. It is also consistent with a twodomain conceptual model of the basalt matrix in which the long-term mineralization rate is controlled by mass transfer between a relatively non-reactive large-pore domain in which fluid flow (CO₂ plus water) occurs and a less mobile to stagnant highly reactive small-pore, large surface area domain.

Figure 4. Vertical variations in groundwater composition for the TAN-33 well collected at a vertical resolution of 36-cm using a passive multilevel sampler (right). Groundwater compositions of (left to right) dissolved inorganic carbon (DIC), δ^{13} C, and SiO₂ exhibits subtle but distinct variations that are correlated with geologic features (interflow zones, fractured flow-interiors, and unfractured flowinteriors) of the aquifer. The sharp compositional contrasts suggest that in the absence of vertical fractures there is little vertical transport. (Smith et al. 1999)

TAN-33 Well Log. The TAN-33 well was drilled and cored as part of a study to (in part) assess recent calcite precipitation in response to microbial degradation of a Trichloroethylene (TCE) groundwater plume at Test Area North (TAN) facility at the Idaho National Laboratory (INL; Tobin et al. 2000). Red arrows indicate basalt sampling depths. Teal interval indicates multilevel groundwater sampling.

References

Smith RW, FS Colwell, RM Lehman, TL McLing, and JP McKinley (1999) Vertical Variations in Composition for TCE Contaminated Groundwater at the Test Area North (TAN), Idaho National Engineering and Environmental Laboratory, Idaho (abs.). 4th International Symposium on Subsurface Microbiology, August 22-27, 1999, Vail, CO.

Tobin, KJ, FS Colwell, TC Onstott, and RW Smith (2000) Recent calcite spar in an aquifer waste plume: a possible example of contamination driven calcite precipitation. Chemical Geology 169(3-4):449-460. https://doi.org/10.1016/S0009-2541(00)00220-5.

Snake River Plain Basal with natural calci mineralizatio

M-33 Idaho National E MYSICAL LOCE al Gamma sity of natural radioactivity, primarily from pes of K, Th and U decay series. on rate of neutrons from a chemical source in t ging on a detector. The rate is inversely pro- a number of hydrogen atoms and neutron absorb as chloring in brings.	PRACTURE ANALYSIS AND FLOW LOOD Practure Dip. Linear scale, measured from BHTV i Dip Direction (degrees from North) Practure Prequency. Practure Sperture, plotted even Practure Aperture. Cumulative sperture / foot, plotted	ING Ambient Flow Test magewinduced Magnetic Field Logging Interval flow rate plotted over per minute Pump Flow Test Induced Magnetic Field Logging Interval flow rate plotted over gallons per minute ry figgraphility Profile hydraulic conductivity analysis in ft/day. d every foot	under embient flow conditions r length of tested interval under pumping conditions. r length of tested interval determined from pump test	STRATICRAPHIC BOUNDARIES	: Lithologic contacts mea Massive Basalt Flow (M) Basalt Flow with Vertical Basalt Flow with Horizont Inter Flow Zone, Vesicula	sured at the base of bas Fractures (VF) al Fractures (HF) ar, Partings, Fissures, B	alt flow units Srokan Basalt (IFZ)
al Game set of A, Th and U decay series." The of Beatrons From a chesical secret at a station of beatrons from a chesical secret at anaber of bydrogen store and neutron shorts a chierine is brinse. aral Gamma Neutron 20 30 40 50-1000 0 500 -500 5	Practure Dip. Liner scale, sessured from North) Practure Count / foot, plotted eve Practure Aperture. Countaities epetites / foot, plotted N E C W N 200 200 200 200 200 200 200 200 200 20	Achient Flow Text Inderval. Ilev rate Jolted over per minute Profile enductive profile and a second galione per minute Travel Time Image (azimuth) N E E N BHTV Achient Augustic Conductive of a second and a second a sec	under ambient flow emdii ingth of tested interval determined from pure test			Practures (VF) anbient Pump Flow Teat (gpm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	K 4 K 4 60 192 60 192 60 192 190 190 190 200 200 200
	412 414 416 416 419 422 424 426 420 420 422 424 426 428 429 429 429 429 429 429 429 429 429 429						410 412 414 416 418 420 422 424 426 428 428 428 430 430 432 434 436 435 436 436 446 445