

GEOCHEMISTRY AND TECTONIC EVOLUTION OF THE POLYGENETIC INGALLS OPHIOLITE COMPLEX, CENTRAL CASCADES, WASHINGTON

Plumes, ophiolites, and oceanic crust? We got'em all!

By Jamie MacDonald & Bob Miller

Location of the Middle to Late Jurassic North American Cordilleran ophiolites. The older ophiolitic Rattlesnake Creek terrane is also displayed.

Figure is from MacDonald et al. (2008).

JO-DEO = Devils Elbow ophiolite.

Simplified geologic map displaying pre-Cenozoic tectonic elements of the central and northwest Cascades

Note the:

Ingalls ophiolite complex (ING)
 (MacDonald et al., 2008; Miller, 1985)

Fidalgo ophiolite complex (FC) of the Decatur terrane (Brown, 2012)

& Twin Sisters ultramafic complex (TS) in the Bell Pass mélange (Tikoff et al., 2010);

Ingalls ophiolite complex is a nearly complete, yet highly dismembered polygenetic ophiolite.

(Miller, 1985;
MacDonald et
al., 2008)

Three distinct peridotite units, which have been variably serpentinized.

1. Southern dunite and harzburgite unit;
2. Central lherzolite, hornblende peridotite, and plagioclase peridotite overprinted by a high-to low-temperature Navaho Divide fault zone (NDFZ);
3. And a northern lherzolite unit (Miller and Mogk, 1987).

**Mylonitic Plagioclase (An₇₄)
Peridotite. Base of photo = 8 mm**

**Opx Porphyroblast – Mylonitic
Hbl Peridotite**

Mineral assemblages in the mylonitic peridotites overprinted by the NDFZ record high temperatures (≥ 900 °C) and were interpreted by Miller and Mogk (1987) to have formed in a fracture zone.

Iron Mountin unit

- Eocene**
Undifferentiated Swauk and Chumstick Formations.
- Cz**
- Peshastin Fm.**
- Jurassic argillite and minor graywacke, chert, sedimentary serpentinite and ophiolite breccia.**
- Esmeralda Peaks unit**
- Late Jurassic gabbro, diabase, pillow basalt and breccia. MORB-IAT affinities**
- Iron Mt. unit**
- Early Jurassic pillow basalt, pillow breccia, minor oolitic limestone. WPB affinities**
- Amphibolite**
- Serpentinite mélange: overprints mylonitic lherzolite within the NDFZ**
- Mantle peridotite tectonite**
- De Roux unit**
- Jurassic(?) phyllite, chert, metabasalt**
- CERFZ = Cle Elum Ridge Fault Zone
- EP = Esmeralda Peaks
- I = Iron Mountain
- IP = Ingalls Peak area
- ND = Navaho Divide
- NDFZ = Navaho Divide Fault Zone
- S = Sheep Mountain

Common lithologies of the Iron Mountain unit of the Ingalls ophiolite complex

Pillow and massive
flows

Hyaloclastites

Limestones

Chert

Esmeralda Peaks unit

**Common lithologies
of the Esmarelda
Peaks unit of the
Ingalls ophiolite
complex**

**Pillow and massive
flows**

**Massive diabase
with rare dikes**

Gabbro

Rare plagiogranites

Rare chert

MORB-normalized diagrams for all Ingalls ophiolite samples. From MacDonald et al. (2008)

Esmeralda Peaks unit (Late Jurassic)	
● Boninite pillow basalt	■ Diabase
● Pillow basalt	▲ Tonalite or trondhjemite
Iron Mountain unit (Early Jurassic)	
○ Pillow basalt	
● Alkali rhyolite	

Ingalls ophiolite complex samples

- Esmeralda Peaks pillow flows (161 Ma)
- Esmeralda Peaks diabase (161 Ma)
- Iron Mount pillow and massive flows (192 Ma)

Ingalls ophiolite complex samples

- Esmeralda Peaks pillow flows (161 Ma)
- Esmeralda Peaks diabase (161 Ma)
- Iron Mount pillow and massive flows (192 Ma)

Mafic Ingalls ophiolite samples plotted on the Shervais (2022) discrimination diagram

- Esmeralda Peaks boninite
- Esmeralda Peaks pillow basalt
- Esmeralda Peaks diabase

FMM = fertile
MORB mantle

All extrusive Ingalls ophiolite samples plotted on “Pearce diagrams”.

Boninite classifications of LeMaitre (2002) (top left) and Pearce and Reagan (2019) (top right) for Ingalls ophiolite complex

high-Mg basalts (SHMB)
 low-Ti basalts (LOTI)
 high-Si boninites (HSB)
 low-Si boninites (LSB).

Late Jurassic forearc rifting possible initiation by slab rollback

Late Jurassic sediments sitting disconformably on Early Jurassic rifted basement

