Rare earth elements (REE) in West Virginia coal mine drainage; an analysis of CMD discharges from various coal seams

Eliza L Siefert^{1 2} Dorothy J Vesper² Paul F Ziemkiewicz¹ David K Hoffman, Jr¹ Nate C DePriest¹

¹ West Virginia Water Research Institute, WVU
² Department of Geology and Geography, WVU

Maiden Mine Discharge into Robinson Run in Monongalia Co, WV (E. Siefert, WVWRI)

GSA Northeast and North-Central Section Meeting, Erie PA, March 2025

Background

Coal mine drainage in WV

- Pyrite oxidizes to form sulfuric acid, releases metals
- AML's are government responsibility to treat
- There are over 12,000 miles of streams and rivers affected by CMD in the United States
 - 2,500 stream mi impacted by CMD in WV

AML – abandoned mine lands (prior to 1977) CMD – coal mine drainage

AML discharge into Glade Run in Grant Co, WV (M. Shafer, WVWRI)

Rare earth elements

- 17 elements considered rare earth elements (REE)
- Currently, most of world's REE are mined in China
- WVWRI found that REEs exist in raw CMD in all sites sampled (>300)
- In WV, those who treat CMD get the economic benefit of any byproducts
 - HB 4003

Obtained from sciencenotes.org

Sample Distribution

		Major Coal Beds		
	Dunkard	Washington		
ian	Group	Waynesburg		
		Uniontown		
an		Sewickley		
<u>ک</u>	Monongahela	Redstone		
ns	Group	Pittsburgh		Pittsburgh
en		Little Pittsburgh		0
r P		Elk Lick		• Elk Lick
be	Conemaugh	Harlem		
d	Outcindugii	Bakerstown		Bakerstown
	Group	Brush Creek		
		Mahoning		
		Upper Freeport		Upper Freeport
		Upper Kittanning		
	Allegheny	Middle Kittanning		Middle Kittanning
	Group	Lower Kittanning (No. 6 block)		l ower Kittanning
	oroup	No 5 Block	,	
		Stockton		
		Coalburg		
		Winifrede		
an		Clinton		
ni		Fire Clay		
lva		Cedar Grove		
syl		Williamson		
u u		Peerless		
Pe	Kanawika	No 2 Gas		
e		Powellton		
pp	Kanawna	Eagle		
Ξ	Formation	Little Eagle		
		Matewan		
		Upper War Eagle		
		Ben's Creek		
		Lower War Eagle		
		Glenalum Tunnel		
		Gilbert		
		Douglas		
		l ower Douglas		

221 CMD Locations Sampled Since 2021

Locations relative to AMLs

Pittsburgh Coal

oper ylvanian	Dunkard Group	
	Monongahela Group	<
Denns	Conemaugh Group	
E	Allegheny Group	
Middle Pennsylvanian	Kanawha Formation	
ennsylvanian	New River Formation	
Lower P	Pocahontas Formation	

Pittsburgh Coal

TREE Concentrations in CMD associated with Pittsburgh coal

Pittsburgh Coal

Locations	# of sites	32
	# of samples	101
рН	Range	2.2-8.1
	Average	3.3
Total REE	Range	4-1754
(ug/L)	Average	319

- Lowest TREE concentrations variable between watersheds
- Highest TREE concentrations into Cheat River and Monongahela River

Surface mine discharge into Crafts Run in Monongalia Co, WV (E. Siefert, WVWRI)

Elk Lick Coal

an	Dunkard Group	
lpper sylvani	Monongahela Group	
Denns	Conemaugh Group	
2	Allegheny Group	
Middle Pennsylvania	Kanawha Formation	
ennsylvanian	New River Formation	
Lower P	Pocahontas Formation	

Elk Lick Coal

TREE Concentrations in CMD associated with Elk Lick coal

Elk Lick Coal

Locations	# of sites	3
	# of samples	4
рН	Range	2.7-3.4
	Average	3.2
Total REE	Range	16-107
(ug/L)	Average	66

- Abram Creek of North Branch of Potomac
- Lowest TREE from AML into Emory Creek
- Highest TREE from AML into Glade Run during low flow

Surface mine discharge into Little Creek in Grant Co, WV (E. Siefert, WVWRI)

Bakerstown Coal

an	Dunkard Group	
pper ylvani	Monongahela Group	
U Penns	Conemaugh Group	
	Allegheny Group	
Middle Pennsylvanian	Kanawha Formation	
ennsylvanian	New River Formation	
Lower Po	Pocahontas Formation	

Bakerstown Coal

TREE Concentrations in CMD associated with Bakerstown coal

Bakerstown Coal

Locations	# of sites	8
	# of samples	8
рН	Range	3.0-6.7
	Average	4.1
Total REE	Range	20-193
(ug/L)	Average	76

- Lowest TREE was pH 6.68
- Highest TREE into OSR treatment with pH 4.4

Discharge into FOC treatment system in Preston Co, WV (G. Richardson, FOC)

Upper Freeport Coal

an	Dunkard Group	
pper ylvani	Monongahela Group	
n Denns	Conemaugh Group	
u	Allegheny Group	
Middle Pennsylvania	Kanawha Formation	
ennsylvanian	New River Formation	
Lower P	Pocahontas Formation	

Upper Freeport Coal

TREE Concentrations in CMD associated with Upper Freeport coal

Upper Freeport Coal

Locations	# of sites	139
	# of samples	230
рН	Range	2.2 - 7.1
	Average	3.3
Total REE	Range	0.1 - 1289
(ug/L)	Average	217

- Lowest TREE concentrations variable among watersheds
- Highest TREE concentrations into Cheat River

AML discharge into Lick Run in Preston Co, WV (M. Shafer, WVWRI)

Middle Kittanning Coal

an	Dunkard Group	
pper ylvani	Monongahela Group	
Denns	Conemaugh Group	
и	Allegheny Group	
Middle Pennsylvania	Kanawha Formation	
ennsylvanian	New River Formation	
Lower P	Pocahontas Formation	

Middle Kittanning Coal

Middle Kittanning Coal

Locations	# of sites	29
	# of samples	33
рН	Range	2.8-6.6
	Average	3.8
Total REE	Range	0.01-454
(ug/L)	Average	70

Discharge from Kittle Flats in Randolph Co, WV (R. Spirnak, WVWRI)

- Lowest TREE in Roaring Creek with pH >3.6
- Highest TREE in Kittle Flats (Cassity Fork) with pH < 2.9

Lower Kittanning Coal

an	Dunkard Group	
Upper Pennsylvani	Monongahela Group	
	Conemaugh Group	
u	Allegheny Group	
Middle Pennsylvania	Kanawha Formation	
ennsylvanian	New River Formation	
Lower P	Pocahontas Formation	

Lower Kittanning Coal

TREE Concentrations in CMD associated with Lower Kittanning

Lower Kittanning Coal

Locations	# of sites	10
	# of samples	11
рН	Range	2.7-5.6
	Average	3.6
Total REE (ug/L)	Range	7-388
	Average	148

- Samples from OSR site tying into active treatment
- No major differences between samples with varying concentrations

OSR treatment system influent CMD in Upshur Co, WV (R. Spirnak, WVWRI)

Summary

Pittsburgh and Upper Freeport coal mines released the most TREEs, respectively

The Middle Kittanning, Elk Lick, Bakerstown, and Lower Kittanning coal mines released the least TREEs, respectively

In general, low pH CMD contain higher TREE concentrations

Conclusions

- CMD associated with Pittsburgh coal mining had highest recorded TREE concentration
 - Overall highest concentrations
- Middle Kittanning coal had lowest recorded TREE (of the formations included)
- Low pH CMDs had highest TREE across all associated coals

Going Forward

- Continue monthly trace and major metal sampling at select sites
- Watershed scale restoration efforts
- Comparison with other published CMD REE data
 - ex: Cravotta, 2008 (Parts 1 and 2)
- Evaluate data for DIC, NPOC, CO₂ analysis

WVWRI and WVGES at treatment system in Deckers Creek (R. Spirnak, WVWRI)

Acknowledgements

Funding:

- National Energy Technology Laboratory CORECM
- WV Department of Environmental Protection

Assistance:

- Office of Surface Mining Reclamation and Enforcement
- WV Geologic and Economic Survey
- Friends of the Cheat
- Friends of Deckers Creek
- Save the Tygart Watershed Association
- Garrett College

References:

- Cravotta CA. (2008a). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. *Applied Geochemistry* 23, 166-202.
- Cravotta CA. (2008b). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls of constituent concentrations. *Applied Geochemistry* 23, 293-226.
- Gambogi, J. (2016). Rare earths. *2012 Minerals Yearbook (pp 60.1)*. United States Geological Survey.
- Möller p. (2022). Chapter 2: Discovery and occurrence of lanthanoids and yttrium. *Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering* (pp 13). IWA Publishing.
- Skousen JG., Sexstone A., Ziemkiewicz PF. (2000). Chapter 6. Acid mine drainage control and treatment. *Reclamation of drastically disturbed lands*. American Society of Agronomy and American Society for Surface Mining and Reclamation.
- Skousen J., Zipper CE., Rose A., Ziemkiewicz PF., Nairn R., McDonald LM., Kleinmann RL. (2016). Review of passive systems for acid mine drainage treatment. *Mine Water Environment* 36, 133-153.
- Vass CR., Noble A., Ziemkiewicz PF. (2019). The occurrence and concentration of rare earth elements in acid mine drainage and treatment by-products: Part 1 – Initial survey of the Northern Appalachian coal basin. *Mining, Metallurgy & Exploration* 36, 903-916.
- WVDEP-OSR (https://dep.wv.gov/dlr/osr/Pages/default.aspx)

Eliza.siefert@mail.wvu.edu

Critical Materials Water Researcher, WVWRI

