XVI INQUA Congress

Paper No. 9
Presentation Time: 1:30 PM-4:30 PM

STRATIGRAPHY OF THE DANUBE LOESS


MARKOVIC, Slobodan B., Geography, University of Novi Sad, Trg Dositeja Obradovica 3, Novi Sad, 21000, Yugoslavia, KUKLA, George J., Lamont Doherty Earth Observatory, Palisades, N.Y. 10964 and HELLER, Friedrich, Institut für Geophysik, ETH Zürich, Zürich, CH-8093, Switzerland, zbir@im.ns.ac.yu

Loess-paleosol sequences in the middle and lower reaches of the Danube river basin contain the longest and most complete climate records in central Europe from the last two million years. The Danube loess belt covers about 200.000 km2 in 11 countries: Germany, Austria, Czech Republic, Slovakia, Hungary, Croatia, Serbia and Montenegro, Rumania, Bulgaria, Moldova and Ukraine. Local loess-paleosol stratigraphic schemes have been defined in all these countries separately. The most important sites have been described at Krems, Stranzendorf, Cerveny Kopec, Paks, Stari Slankamen, Koriten and Novaya Etuliya (Map 1). Most of them reach into the geomagnetic Matuyama Epoch. Based on paleomagnetic, soil-stratigraphic and other paleoenvironmental data it is possible to correlate the sites and reconstruct the approximate climate development in the basin. Major environmental shifts affected the area in the middle Brunhes about 450,000 years ago and in the Upper Matuyama, about 800,000 years ago. We compare the combined Danube loess stratigraphic model (marked by a prefix D) with the record of the Chinese loess plateau and with the oxygen isotope variations recorded in deep-sea sediments (Table 1).

Table 1. Danube loess -stratigraphic model of the last approximately one million years and its relation to the Chinese loess, marine isotope stratigraphy (MIS), glacial cycles and local subdivisions at CK-Cerveny Kopec; K-Krems;P-Paks; SS-Stari Slankamen; KO –Korite and; NE- Novaya Etulia..Reversely magnetized units shaded.

Danube

loess

Chinese

loess

MIS

Glacial

cycle

CK

K

P

SS

KO

NE

D S0

S0

1

A

A

KR1

 

SL S0

   

D L1

L1

2-4

B

B3

   

SL L1

   

D S1

S1

5

 

B2,B1

 

MF2

SL S1

S1

PK2

D L2

L2

6

C

C3

   

SL L2

   

D S2

S2

7

 

C2,C1

 

BD

SL S2

S2

PK3.1

D L3

L3

8

D

D3

   

SL L3

   

D S3

S3

9

 

D2,D1

 

BA

SL S3

S3

PK3.2

D L4

L4

10

E

E3

   

SL L4

   

D S4

S4

11

 

E2,E1

 

MB

SL S4

S4

PK3.3

D L5

L5

12

F

E3

   

SL L5

   

DS5

S5

13

 

E2,E1

 

Phe

SL S5

 

S5

PK4

   

14

G

G3

         
   

15

 

G2,G1

 

Mtp

     

D L6

L6

16

H

H3

   

SL L6

   

D S6

S6

17

 

H2,H1

 

hs2

SL S6

S6

PK5

D L7

L7

18

I

I1b

   

SL L7

   

D S7

S7

19

 

I1a

KR4

PD1

SL S7

 

PK6

D L8

L8

20

J

J3

   

SL L8

   

D S8

S8

21

 

J1

KR5

PD2

SLS8

 

PK7

D L9

L9

22-24

K

K3

       

incipient soil

D S9

S9

25

 

K1,K2

KR6

       

D L10

L10

26

L

           

D S10

S10

27

 

L1,L2

       

PK8

1Financial support from the INQUA Excutive Commitee