Paper No. 2
Presentation Time: 8:30 AM
THE GLACIOLOGY OF IRD EVENTS: WARMING AND ICE DYNAMICS
Heinrich events, the enormous glacial-period ice-rafting episodeshave been posited to be due to large-scale surges of the Laurentide ice-sheet (3). However, more frequent events such as the Bond events are difficult to explain this way. Recently acquired geological evidence (2,4) suggests that climatic perturbations are correlated with some N. Atlantic IRD events. A model (1) which show how climate perturbations can lead to IRD events is reviewed. The model shows how 20-50km retreats induced by ablation rates of 2 m/yr provide sufficient debris flux through the grounding line to produce large sedimentation events. Such ablation would reduce ice-shelf extent markedly, permitting debris to reach the calving front and be transported by icebergs leading to ice-rafted debris (IRD) events. Surges are not necessary conditions for the production of large IRD events. The glacial dynamics of this climate perturbation model is compared with the surge theory, with particular emphasis on the amount of sediment that either method can deliver to the oceans. Consideration of the non-exclusivety and consistency of the two mechanisms is emphasised.
(1) R.C.A. Hindmarsh and A. Jenkins, Centurial-millenial ice-rafted debris pulses from ablating marine ice sheets, Geophys Res. Lett 22(12), 2477-2480, 2001; (2) Paul C. Knutz et al. G3 Mul-tidecadal ocean variability and NW European ice sheet surges during the last deglaciation G3 3(12) 17 December 2002 1077, doi:10.1029/2002GC000351; (3) MacAyeal,D.R. Binge/purge oscillations of the Laurentide ice-sheet as a cause of the North-Atlantics Heinrich events, Pale-oceanography, 8(6), p.775-784, (1993); (4) M. Moros, et. al. Were glacial iceberg surges in the North Atlantic triggered by climatic warming?, Marine Geology, 192(4), 2002, p.393-417
© Copyright 2003 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.