Anomalous Accretion Along Outer Cape Cod Shoreline Possibly Linked with Aeolian Transport Associated with Parabolic Dune Field

New England Geological Society of America
March 23, 2009

Stacy Rogers, GISP, Provincetown Center for Coastal Studies
Mark Adams, Cape Cod National Seashore
Graham Giese, Provincetown Center for Coastal Studies

www.coastalstudies.org
Outer Cape Parabolic Dune Field

Photo Source: MassGIS, 2005
Formation of Provincetown Hook

Zeigler et al., 1965
Glacial sediment
Deposited before 15,000 years BP

Modern sediment
Deposited after 15,000 years BP

Giese et al., 2007
Dune Field Development

- Dune field formed at the end of the late 17th century due to human settlement and related land cover changes.

- Parabolic dunes: arms anchored by vegetation and the center portion advances based on wind and climate.

- The dunes appeared to broaden and migrate seaward over time.

- National Park effort to re-vegetate dunes 20-30 years ago.

Photo Source: Peter Rosen
Dune Migration Study

- Strong winter dry westerly-northwesterly wind drives the dunes movement and sediment source.

- Rate of dune movement affected by amount of moisture (Forman et al., 2008).
Cape Cod Outer Coast

Photo Source: Cape Cod National Seashore
Cahoon Beach, Wellfleet

Photo Source: Cape Cod National Seashore
Historic Examples

Coast Guard Station
Moved from Chatham to
Race Point, Provincetown
Recent Examples

Highland Light Move, 1996
Truro, Massachusetts
Current Examples

Photo Source: Christopher Seufert Photography
North Beach, Chatham

Photo Sources: Cape Cod Times (January and March, 2008)
February 3, 2008
February 3, 2008
Prepared to Move
January 27, 2009

Photo Sources: Cape Cod Times (January 28, 2009)
Marindin Surveys

- **Survey of Outer Cape Cod Coast from Chatham to Provincetown in late 1800s**

- **229 on and offshore survey lines recorded in Coastal Geodetic Survey Annual Reports, 1889 and 1891.**

- **Locations reoccupied in 1950s by Zeigler et al.**

- **Average rate of erosion approximately 1 meter/year, varied over distance along shoreline.**
Project Objectives

- Develop a current model of sediment erosion, transportation and deposition of outer Cape Cod coastline.
- Understand and predict the formation and destruction of coastal landforms on Cape Cod.
- Provide valuable information for future management and planning strategies.
Data Sources

- Marindin’s late 1800’s origins, elevations and depths.
- Lidar data from 2005.
- GPS Surveys 2008-9 of marine/terrestrial boundary.
Study Methods

- Create GIS data layer of Marindin’s origins and transects in ArcView 9.3.
- GPS field work to gather the current marine/terrestrial boundary.
- Lidar data (airborne laser mapping technology) data for onshore portion.
- Offshore boat fieldwork to gather bathymetric data.
- Plot data in Matlab and compare current to late 1800s.
- Calculate the volume change and flux rate over time.
Flux Along and Across Shore

Rate of Erosion = $\Delta Q_x + \Delta Q_y$

Q_y: Net alongshore sediment flux in $+y$ direction
Q_x: Net cross-shore sediment flux in $+x$ direction
V: Volume between (e.g.) 1888 & 2008 surveys
Convert Origins and Azimuths

Convert origin latitude/longitude to North American Datum 1927 by subtracting -0.6 from latitude (Giese and Adams, 2007).

Convert NAD27 latitude/longitude to NAD83.

Convert latitude/longitude NAD83 to UTM, meters Zone 19N.
Create Azimuth Lines for Navigation

- Extend Marindin’s lines along same azimuth to 20 m depth.
- Data lines from NOAA charts available from MassGIS.
GPS and Boat Survey Fieldwork

- Terrestrial/Marine boundary location.
- Bathymetric data.
GPS of Terrestrial/Marine Line
Raw Depth Data Collected 2008

- Offshore data snapped to nearest azimuth line.
- Corrected for tides and sea level (in progress).
Results of Raw Data
Mean annual volume loss: 22.3 m3/m
Intersect Marindin’s Lines with GPS
Comparison of Landform Location

<table>
<thead>
<tr>
<th>STN_ID</th>
<th>Est_Bluff_Toe (m)</th>
<th>Bluff_Toe (m)</th>
<th>GIS_BluffDune_Length</th>
<th>Difference 1890-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>140</td>
<td></td>
<td>0.06</td>
<td>139.94</td>
</tr>
<tr>
<td>55</td>
<td>140</td>
<td></td>
<td>-4.02</td>
<td>144.02</td>
</tr>
<tr>
<td>56</td>
<td>180</td>
<td></td>
<td>42.24</td>
<td>137.76</td>
</tr>
<tr>
<td>57</td>
<td>240</td>
<td></td>
<td>126.64</td>
<td>113.36</td>
</tr>
<tr>
<td>58</td>
<td>140</td>
<td></td>
<td>43.27</td>
<td>96.73</td>
</tr>
<tr>
<td>59</td>
<td>65</td>
<td></td>
<td>-52.85</td>
<td>117.85</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>73</td>
<td>-47.63</td>
<td>120.63</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>94</td>
<td>-34.57</td>
<td>128.57</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>91</td>
<td>-18.49</td>
<td>109.49</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>102</td>
<td>-13.99</td>
<td>115.99</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>92</td>
<td>-12.11</td>
<td>104.11</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>117</td>
<td>2.49</td>
<td>114.51</td>
</tr>
</tbody>
</table>
Marine/Terrestrial Boundary Change Along Outer Cape Cod Coast

Mean Annual Change (m/y)

Transect Number
Lidar Coverage of Dune Field
Marine/Terrestrial Boundary Change Along Outer Cape Cod Coast

Transect Number

Mean Annual Change (m/y)
M163

Distance from Origin (m)

Elevation / Depth (m)

-25
-20
-15
-10
-5
0
5
10
15
20
25
0
500
1000
1500
2000
2500

1890s
2005
2008
Interpolated
Conclusions

- An apparent anomalous zone of shoreline growth was located off the outer Cape Cod coast.

- This growth was linked with the location of the parabolic dune field.

- The dune sand is thought to be a sediment source for the shoreline in this area.

- The contribution of the dunes to the overall system is a cross-shore element to consider in the development of a sediment model for the outer Cape Cod shoreline.
Acknowledgments

- Cape Cod National Seashore
- Provincetown Center for Coastal Studies
- Volunteers
- Cape Cod Five Cent Bank