NANOPARTICLE-ENHANCED DEGRADATION OF PENICILLIN ANTIBIOTIC IN WATER: IMPLICATIONS FOR FATE AND TRANSPORT OF PHARMACEUTICALS IN GROUNDWATER
Degradation of zwitterionic AMP (pKa1 = 2.5, pKa2 = 7.3) was observed in timed mixing experiments with 25nm- TiO2 (anatase) at pH 6.2 over 48 hours. TiO2 has a net positive surface charge at pH < 7.2 (pzc). Significant degradation of AMP (m/z = 350) was measured in mixed samples relative to controls, with initial parent AMP of 553 μmol/L dropping to 1 μmol/L within 48 hours. Decrease in AMP concentration was accompanied by an increase in the concentrations of two products, isomers of penicilloic acid (P1 and P2, at m/z = 368-369), likely formed by the hydrolysis of the beta-lactam ring of AMP. Formation of the P2 penicilloic acid isomer can be described by a logarithmic function of ln [P2] = 0.965 (ln(time)) + 5.02 (R2 > 0.98). Comparison of adsorption isotherm and timed experiment data are in progress to quantify the actual extent of, and relationships between adsorption and degradation mechanisms. Similar trends were observed in experiments with nano-Fe2O3 and Al2O3, but no significant enhancement was observed in SiO2 data experiments.