TERRESTRIAL IMPLICATIONS FROM THE PETROGENIC HISTORY OF OLIVINE MEGACRYSTS IN MARTIAN BASALTS
Concentric P zoning in these Martian basalts is shown by bands of higher P concentrations and is tied to the diffusivity of P. The incompatibility of P results in higher concentration of P within the melt while slow diffusion leads to the inability to “outrun” the growing crystal faces. Visible P zones are the result of rapid crystal growth due to increases in cooling rate. Fabbrizio et al. (2010) and Milman-Barris et al. (2006) found P zoning in olivines from Hawaii and explain the phenomenon as undercooling and/or rapid crystal growth. Oscillatory zoning is preserved by high P cores in the megacrysts because of the low diffusivity of P. Phosphorous substitution into the tetrahedral site requires a coupled mechanism to maintain charge balance. The correlation of P and Al in NWA 1183 points to a possible substitution mechanism:
2SiT4+ ↔ PT5+ + AlT3+
Part of the incompatible element signature is fingerprinted in the P2O5 concentration with bulk Y 98 having 0.29% P2O5 while enriched shergottites commonly have higher P2O5. The difference in P2O5 in these megacrysts indicates that the first silicate phase (olivine) crystallized from enriched and depleted basalts, respectively. Thus olivine megacrysts most likely represent phenocrysts and the enriched and depleted signatures were added to the basalts before crystallization. This indicates that the enriched signature and fO2 are decoupled and that an enriched and oxidized Martian mantle may not exist.