PRESSURE CORING IN MARINE SEDIMENTS: INSIGHTS INTO GAS HYDRATE SYSTEMS AND FUTURE DIRECTIONS
A recent focus on deepwater, coarse-grained, high-concentration hydrate reservoirs as a potential energy resource has motivated hydrate drilling and pressure coring expeditions in Japan, India, China, and the U.S., as well as the capability to perform a variety of analyses under pressure and transfer pressurized cores to shore-based laboratories. Pressurized cores can now be analyzed with X-ray imaging, and for physical properties, geomechanical properties, permeability, and microbial activity while maintaining the of samples pressure and temperature within the hydrate stability field. These pressure coring efforts have resulted in an improved understanding of hydrate formation processes, reservoir conditions, and the fundamental properties of hydrate-bearing sediments.
Beyond characterization of hydrate systems, preservation of in situ properties and gas content/composition of sediments by pressure coring has the potential to illuminate deep microbial processes, the geomechanical conditions that can influence submarine slope failures, and the properties of hydrocarbon-bearing mudrocks.